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MOTIVATION SQA DATASET GENERATION

e SQA dataset are generated automatically using a template-based
approach. Each element in SQA has its own semantic
representation.

e Current machine learning systems can only perform one or a
few limited task on sensory data.

e |ntroducing new tasks requires re-training of the system.

. . . Semantic Representation: Scene List S={A,A,...A }, A=t d,s
e User cannot get other information except for predefined > Mpispnily = it dy S/
high-level labels. 0 L e 50.4
S M) OpenDrawer ®W8) CloseDrawer W) Drink ™) ---- W) CloseFridge ™ E
BB L E [1.87s] [1.7s] [8.57s] [2.0s]
| | I : . T .
= | I:. 51 : )& \/e | .a Semantic Representation: Functional Program

What did the user do [before] <opening the fridge> and [after] <closing the drawer>?
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query_action type( AND( relate( before, open the fridge ), relate( after, close the drawer)) )
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Answer obtained from question engine: Apply the functional program above on
the scene list
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make inference. However, none of them works on sensory data from o
heterogeneous sources with complex spatiotemporal relationships

Adopt a representative subset of methods from VQA task:

o Prior and Prior-Q: predict answer based on training answer statistics

Sensoly conioxts, o LSTM/ CNN : baselines using only question/ sensory data as input
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the dishes? e Study the SQA model robustness to linguistic variations, and train
QEestond robust SQA model using the cycle-consistency framework.
DeepSQA framework: e |nvestigate the neural-symbolic approach for sensory QA, explicitly

parse the input question and construct task-dependent model|
during the runtime.

e Sensory data are first processed and fused by deep learning modules.

e Questions are transformed into embedding sequences by learned
word embedding matrix, and then processed using bi-directional
LSTM.

e A recursive attention network is used to extract answers iteratively
from sensory data based on questions.
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